
NOTATION 

r, radial distance from well axis; rc, rw, radii of column and well; rm, radius at which 
melting phase transition occurs; h, m, thickness and porosity of stratum; s thickness of ice 
mass; t, time; %i and ~i, % and ~, thermal conductivities and diffusivities of ice and 
porous stratum; Pi, L, density and heat of fusion of ice; To, T i, T m, temperature of earth's 
surface, porous stratum, and water bubble; q1(t) and q(~), intensity of fictitious heat source, 
dimensioned and dimensionless; T, N, x, dimensionless time, thawing radius, and thickness of 
ice mass; K, M, N, 8, a, dimensionless parameters; u, o, integration variables; 6, length of 
water bubble; Xm(t), Xs(t), coordinates limiting bubble. 
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FINITE-DIFFERENCE SOLUTION OF THE OPTIMIZATION PROBLEM 

IN HIGH-SPEED HEATING OF A BODY OF SIMPLE SHAPE BY 

INTERNAL HEAT SOURCES 

A. V. Kostenko and M. B. Viter UDC 536.12:517.977.56 

A method is proposed for construction of optimal fast-response control of body 
heating under constraints on the control (internal heat sources) and the temperature 
field or stress-strain parameters. 

Body heating by internal heat sources occurs in modern technological processes, for 
instance, the induction heating of articles by high-frequency currents [i], in heat ex- 
changer elements [2], in chemical and nuclear reactions [3], etc. Among analogous processes 
can also be the heating of thin-walled elements during convective heat transfer since in this 
case the temperature of the external medium is in the right side of the heat-conduction equa- 
tions [4]. 

The optimization of body heating relative to fast-response is of directpractical 
interest to raise the productivity of heater plants [5]. In connection with the limited 
power of the installation, here, as well as taking into account the requirement of material 
strength and possibilities of intensive fusion, oxidation, phase microstructure transforma- 
tion and other phenomena that take place at high temperatures in metals and many materials, 
constraints are imposed on the control actions, the thermal process parameters, and the stress- 
strain state [6]. 

Let us consider the problem of constructing an optimal fast-response control of the 
heating of homogeneous or inhomogeneous plates, hollow cylinders and spheres by internal heat 
sources under constraints on the control, the body temperature, the temperature drop, and 
the thermoelastic stresses in the body. 

Heating in the above-mentioned bodies is described by the following boundary-value 
problems: 
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( x"% (x)-~x ) + f (x, O; (x, t ) C V = l k ,  1[:<10, t']; (1) 

(2) 

(3) 

T(x, O)=q~(x), xE[k, 11; 

OT I = HI [T (k, l) - -  q~ (/)]; OT = H~ [T (1, t) - -  q2 (t)l, 

where a(x)  i s  a cont inuous  and l ( x )  a con t i nuous ly  d i f f e r e n t i a b l e  f u n c t i o n .  

Let constraints on the control function f (internal heat source intensity) be satisfied: 

f (x, t) % u (x, t) 

as well as onthe temperature field parameters or the stress-strain state 

(4) 

FT (x, t) ~ W (x, t), (x, t) 6 V. 
Here u(x, t) is a given function, F is a linear operator governing the parameters being 
constained, in particular: 

a) body temperature 

F T  (x, t) = T (x, t); 

b) t empera tu re  drop in the  body 

(5) 

(6) 

c) thermoelastic stresses 

F T  (x, t ) = T  (x, t ) - -  rain T(x, t); 
x~[h, 1] 

(7) 

F T  (x, t) = max (ex~, %u, ~z). (8) 

The following optimization problem is examined. Determine that control function f(x, t) 
that in a minimal time under the constraints (4) and (5) will carry a body over from the 
initial state (2) into the final state characterized by a given mean-integrated temperature 

v + 1  l ( 9 )  
l _ _ k v + l  S xVT(x ,  t ' ) dx  = T*.  

k 

The modifications presented above for F possess the following property [7]: if (x,, t,) 
is the point of the positive maximum of T(x, t) in the domain V, then FT(x, t)I(x,,t,) > 0. 

Then on the basis of the theorem in [8] the following can be asserted: if there exists a 
function that equals the ultimately possible value of the internal heat source intensity or 
assures ultimately admissible values of the parameters being constrained at each point of 
the body, then such a function will be optimal control in fast-response fs the process under 
consideration. Analytically this means that at each point of the domain V at least one of 
the equalities 

f(x, t)=u(x, t), x6g~; (10) 
FT(x, /)= W(x, t), xEVw, (11) 

should be satisfied, where V u U VW = ~. 

The inequalities (4) and (5) should be satisfied simultaneously with the equalities 
(i0) and (ii) in the domain V. Conditions (4), (5), (i0), (ii) are optimality conditions for 
the problem formulated. 

Since the domains V u and V W are unknown in advance and depend on the thermal state of 
the body, then the optimization problem is substantially nonlinear. Numerical methods are 
used for its solutions. 

The algorithm to construct the desired control function and the appropriate temperature 
mode is based on a finite-difference approximation of the boundary-value problem (1)-(3) and 
the equalities (i0), (ii). 
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We partition the domain V by a uniform mesh with step h in the coordinate x and step T 
on the time axis. We use the notation T~ = T(xi, tj); ~ = qm(tj); f~ = f(xi, tj), where 

x.1 = k + ih; tj = j~; i = 0, n; j = i, s m = i, 2. 

The finite-difference analog of the boundary-value problem is a system of linear alge- 
braic equations in Tj: 

I 

aoT~ - -  coT{ = doT~ -1  + r~q{ + go[~ , (12)  

- -  a , T i _ ,  -{- c , r i  - -  b,T~+, = d , T i - '  q -  g i [ i ,  1 .<~ i <~ n - -  1, 

- a .r~_,  + c.r~ = a.r~-'  + r~c~ + g .# . .  

A purely implicit scheme is used here to construct the difference equations; ai, bi, ci, di, 
rl, r2, g, i = 0, n, are the coefficients of the approximation of the boundary-value problem 
(1)-(3). Formulas for their calculation are presented in [9]. 

We also approximate the optimality condition in an appropriate manner. The numerical 
analog of equalities (i0) and (ii) here has the form 

[~ = u (&, 0); (13)  

qb{ _--_ W ( x i  ' ty), (14)  

where  i=0 , - -n ;  / = '1,  l; @~=FT(x ,  t)l(x,, t j~ �9 

The m a t r i x  o f  t h e  s y s t e m  (12)  has  a t h r e e - d i a g o n a l  shape  w i t h  d i a g o n a l  p r edominance ,  
which assures correctness and stability of the algorithm by monotonic factorization [i0]. 
The value of the temperature Ti, i = 0, n; j = i, s can be found by the factorization method 

if the values of the control f~, i = 0, n; j = i, s and the temperature Tj -I, i = 0, n; j = 
I 1 

i, s are known. Here Ti ~ = ~(xi), i = 0,----~. Since the constraints (4) and (5) should be 
satisfied at the initial time, then the following inequality is valid 

F~ (x) ~ W (0, x), x C [k, 1]. 

C o n s e q u e n t l y ,  i t  can be assumed t h a t  f3  = u (x  i ,  ~ ) ,  i = 0, n. 
1 

At the time t L let the inequality 

~ > w (XN, tL) 

be satisfied at the point x N, which contradicts condition (5). 

Then to satisfy the optimality conditions (4), (5), (10), 
quire compliance with the equalities 

(15)  

(ii) it is necessary to re- 

[~ = u (&, tz), i 4= N; ( 1 6 )  

r = w (x~, tO. (17)  

In this case the solution of the system of equations (12) in which f~1 = u(xi' tL) for i ~ N 
L 

must be found to determine T., i = 0, n and the N-th equation must be replaced by (17). 
1 

According to the known values of T~, i = 0, n and from the N-th equation of the original 
1 

system (12), the value of f~ is determined uniquely, which is already not generally equal to 
the ultimately possible. T~us, for N = 0 

for N = i, n - 1 

for N = n 

#o = (aor~--  '~ ~-'  coT1 - -  doTe - -  rlqtf)/go; 

= - -  a n T n - 1  - -  dnT~ - -  2q2)lgn. 

(18) 

(19) 

(20) 
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Since the desired optimal control should satisfy condition (4), then at the time t L the 
inequality 

[~ ~< u (XN, IL) (21)  

should be satisfied, which indicates the necessity for lowering the heat source power at the 
time the parameter being constrained reaches the ultimately allowable value. This condition 
is satisfied for the majority of practical problems. 

If condition (21) is not satisfied, then the method being proposed does not permit 
construction of the function satisfying (4), (5), (i0), and (ii). 

Let inequality (21) be satisfied, and at a certain time tj > t L let the desired control 

f~ exceed the ultimately possible value U(Xn, tj). Then again we should set f~ = U(XN, tj), 

and the values of Ti, i= 0, n, , will be determined from the system (12)0 If inequality (15) 
is satisfied at the moment of time t L at several points xN,, XN ..... , XN~, s~n, then the 
value of T#, i = 0, n, is determined from the system N I, N2,..., Ns, whose equations are re- 
placed by equations of the form (17), The unknown values of the control functions are deter- 
mined from (18)-(20). The algorithm to determine f~ and T~, i = 0, n; j = I, I at different 
stages of the heating is thereby given, i I 

Let us use the algorithm described to construct an optimal control for specifically 
given constraints. 

For a constraint on the body temperature #~ = T~. In the more general case the system 
1 1 

of equations to determine T~ will contain s < n equations 

T~ m = IF (XNm , t]), m = 1, s, 

and t h e  r e s t  w i l l  a g r e e  w i t h  t h e  e q u a t i o n s  o f  s y s t e m  ( 1 2 ) .  

I t  i s  e a s y  t o  s ee  t h a t  t h i s  i s  a t r i d i a g o n a l  s y s t e m ,  has  d i a g o n a l  p r e d o m i n a n c e ,  and 
t h e r e f o r e ,  can e a s i l y  be s o l v e d  by t h e  f a c t o r i z a t i o n  method.  

The f i n i t e - d i f f e r e n c e  a p p r o x i m a t i o n  o f  t h e  c o n s t r a i n t  b) w i l l  have  t h e  form 

cIdi= Ti--T~. (22)  

The point x r satisfies the condition T~ = min{T~}, i = 0, n In this case the system of linear 

equations in T@ will contain s S n equations 
1 

i f YNm--Tr=lF(XNm, t j), m =  1, s, 

and t h e  r e s t  w i l l  a g r e e  w i t h  e q u a t i o n s  o f  t h e  s y s t e m  ( 1 2 ) .  

The m a t r i x  o f  t h e  s y s t e m  c o n s t r u c t e d  p o s s e s s e s  t h e  p r o p e r t y  o f  d i a g o n a l  p r e d o m i n a n c e  and 
i t s  s t r u c t u r e  i s  such  t h a t  i t  p e r m i t s  s t a b l e  d e t e r m i n a t i o n  o f  t h e  s o l u t i o n  by t h e  method o f  
f a c t o r i z a t i o n  f o r  complex sy s t ems  [ 1 0 ] .  

I f  i t  t u r n s  ou t  d u r i n g  f u r t h e r  c a l c u l a t i o n s  t h a t  T~ = min{T~}, i = 0, n; p=/=r , t h e n  t h e  

c o m p u t a t i o n s  must  be r e p e a t e d  by r e p l a c i n g  T~ by TJ in  ( 2 2 ) .  
P 

In  t h e  c a s e  c ) ,  f o r  i n s t a n c e ,  f o r  c o n s t r a i n t s  on t h e  c o m p r e s s i v e  s t r e s s  in  a homogeneous 
p l a t e  [6] 

~ will have the form 

1 

FT(x, t)= T(x, t )--  ; T (x, t) dx 
0 

p=O 
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Fig. i. Optimal control of heating a hollow cylinder (A, H 2 = 
6) and a hollow sphere (B, H2 = 4) for a constraint on the 
temperature (W(x, t) = 1.2; u(x, t) = 13, x I = 0.5; x 2 = 0.575; 
x~ = 0.65; x~ = i). 

r ,'.Id' I 

o l  , , , , t 
@ ope qll u qlz t" t 

Fig. 2. Optimal control of heating a plate under 
a constraint on the compressive stress (W(x, t) = 
0.05; u(x, t) = -3x + i0; H 2 = 4; xl = 0; x 2 = 
0.3; xs = 0.5; x~ = i). 

where 6pi is the Kronecker delta, and % = a n = h/2; ~i = h; i = I, n - i. 

As earlier, in the case of surpassing the constant (5) at the points xN l .... , XNs at 

the time tj, the system to determine T~, i = 0, n, will contain s < n equations 

~,,(6p~v m - -  r Tip : W (XNm, t j), m : 1, sl 
p=0 

and t h e  r e s t  w i l l  a g r e e  w i t h  t h e  e q u a t i o n s  o f  t h e  s y s t e m  ( 1 2 ) .  

I t  can  e a s i l y  be  shown t h a t  t h e  m a t r i x  o f  t h i s  s y s t e m  h a s  d i a g o n a l  p r e d o m i n a n c e ;  c o n -  
s e q u e n t l y ,  t h e  s o l u t i o n  can  be d e t e r m i n e d  s t a b l y  by u s i n g  a c e r t a i n  m o d i f i c a t i o n  o f  t h e  
f a c t o r i z a t i o n  method  f o r  complex  s y s t e m s .  

As an e x a m p l e  o f  r e a l i z i n g  t h e  p r o p o s e d  me thod ,  an o p t i m a l  c o n t r o l  o f  t h e  h e a t i n g  o f  a 
p l a t e ,  h o l l o w  c y l i n d e r s ,  and s p h e r e s  was computed  f o r  a ( x )  = X(x) = 1; r  = 0; H1 = 0, 
q2 = 0. 

The change in the temperature T(xi, t)/T*, i = i, 4, is shown in Figs. 1 and 2 by the 
solid curves a, b, c, d, and the change in the optimal control f(xi, t)/T*, i = i, 4, during 
heating by curves 1-4. The change in the relative mean integrated temperature is shown by 
dashed lines. 

As is seen from the figures, the optimal fast-response control at the point x4 equals 
the ultimately allowable in the extent of the whole heating process while the optimal control 
at the points xl, x2, x 3 is in two stages: in the initial heating period it equals the ulti- 
mately possible value, and after emergence at the constraint assures the ultimately allowable 
values of the parameters being constrained at these points. 

Remark. This numerical solutions method for the problem of optimal fast-response heating 
can evidently be applied also to piecewise-homogeneous bodies of simple shape. To do this 
it is necessary to select an appropriate method of approximating the heat conduction equation 
and the boundary conditions. The heat flux or the temperature on the body surface can also 
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be given as the latter. As the final target we can have the heating to a given temperature at 
a certain fixed point. 

NOTATION 

x = x,/s a dimensionless coordinate; k = 0, s = h in the case of a plate (v = 0), k = 
RI/R2, s = R 2 in the case of hollow cylinders (v = i) and spheres (v = 2); h, RI, R2, respec- 
tively, plate thickness and the inner and outer radii of the cylinder or sphere, m; a(x) = 
a,(x)/a,(k), a,(x), bulk specific heat, J/(m3"K); %(x) = %~(x)/%,(k), %,(x), heat-conduction 
coefficient, W/(m'K); t = ~,(k)t,/a,(k)s 2, t,, time, sec; T~x, t), body temperature, ~ 
f(x, t) = f*(x, t)s f*(x, t), internal heat source intensity, W/m3; Hz, H2, dimension- 
less heat-transfer coefficients; qz(t), q2(t), temperatures of the external medium, ~ t', 
optimal heating time, sec; Oxx,Oyy, Ozz, dimensionless principal stress tensor components. 
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